
Week 7 - Monday

 What did we talk about last time?
 Graphic design
 Software engineering design
 Architectural styles

 Project scheduling is organizing the work
 Into separate tasks
 When the tasks will be done
 Who will do them

 Both waterfall and agile approaches benefit from scheduling
 For waterfall, all tasks in the project are scheduled
 For agile, there might be an overall schedule for when major phases of the

project will be completed
 Tasks should last at least a week but not more than two months
 A task taking more than two months should be broken into subtasks

 It's helpful to have visualizations of these tasks

 This table shows
all the task
information, but
it's hard to
visualize

 M is used to
label milestones

Task Effort (person-days) Duration (days) Dependencies

T1 15 10

T2 8 15

T3 20 15 T1 (M1)

T4 5 10

T5 5 10 T2, T4 (M3)

T6 10 5 T1, T2 (M4)

T7 25 20 T1 (M1)

T8 75 25 T4 (M2)

T9 10 15 T3, T6 (M5)

T10 20 15 T7, T8 (M6)

T11 10 10 T9 (M7)

T12 20 10 T10, T11 (M8)

 Gantt charts show the same
information, but in a much
clearer way
 Bars shows the length of each task
 Dependencies are shown by the

starting point of each task
 Recall that you have to make a

Gantt chart for Project 2
 Thus, you need to break down

your product into tasks and
figure out which tasks are
dependent on which

 It's also possible to
visualize which staff
members are working
on which task (and
when)

 Doing so might be
helpful but is not
required for Project 2

 Detailed design is specifying the internals of the major
components

 Sequence diagrams and state diagrams can be useful for this
kind of design

 However, class diagrams are indispensable

 Class diagrams are made up of class symbols (rectangles)
 These class symbols contain one or more compartments
 The top compartment has the class name
 A second, optional compartment often contains attributes

(called member variables in Java classes)
 Often followed by a colon with the type

 A third, optional compartment often contains operations
(called methods in Java classes)
 Sometimes followed by parameter and return types

 Visibility modifiers can be marked:
 + for public
 # for protected
 ~ for package
 - for private

 Only important attributes and operations need to be
specified
 Classes might contain others that aren't shown

 Inheritance is shown with the generalization connector
 A solid line from the child class to a solid triangle connected to the parent class
 Confusingly, this means that children classes point at their parent classes

 Interfaces look like classes but are marked with «interface» above the class name
 This kind of marking is called a stereotype
 Stereotypes show extra information that wasn't part of the original UML class diagram specification

 Classes that implement interfaces have dashed lines leading to a solid triangle connected to
the interface

 Associations are shown with lines between classes
 Associations can be labeled to explain them
 The lines can be marked with the multiplicity, showing

how many of each class can be associated with the other
 The multiplicity can be comma separated lists or ranges,

and * means zero or more
 When a class is part of another class, the part is

connected by a line and a diamond (the
aggregation connection) to the whole

From visual-paradigm.com

 With an architecture designed, you can break down its
components into the actual software objects you will need
 There's no cookbook way to do this
 It requires thinking long and hard about how best to break functionality

into small pieces
 Possible approaches:
 Look at the written description of your system. Nouns map to objects and

members. Verbs map to operations, services, and methods.
 Tangible entities map to objects and members. For example, aircraft,

managers, events, and locations might all be objects.
 Analyze different use cases and try to find objects that use cases have in

common.

 Software design patterns are ways of designing objects that
have been used successfully in the past
 Think of them as rough blueprints or guidelines

 The idea emerged in the late 70s and is best known from the 1994
book Design Patterns: Elements of Reusable Object-Oriented
Software
 23 different patterns, written by the Gang of Four: Gamma, Helm,

Johnson, and Vlissides
 10 years ago, job interviews routinely asked questions about

design patterns
 The software engineering community is not as focused on design

patterns now, though they are still useful

 Design patterns have four essential elements:
 A meaningful name
 A description of the problem area that explains when the pattern

may be applied
 A solution description of the parts of the design, their relationships,

and their responsibilities
 A statement of the consequences of using the design pattern

 Patterns are more abstract than code

 The composite pattern is useful for
part-whole hierarchies of objects

 A group of objects somewhere in the
hierarchy can be treated like a single
object

 The Swing library uses the composite
pattern for its graphical components

 Problems the composite pattern
solves:
 Representing a part-whole hierarchy so

that clients can treat parts and wholes the
same

 Representing a part-whole hierarchy as a
tree

interface Component {
public void doAction(); // Draw, print, etc.

}
public class Composite implements Component {

private List<Component> children = new ArrayList<>();
public void add(Component component) {

children.add(component);
}
public void doAction() {

for (Component component : children)
component.doAction();

}
}

 The command pattern is
useful for encapsulating an
action in an object

 The action is independent from
the objects that used it and can
be stored for later

 The Swing library uses the
command pattern for events

 Problems the command
pattern solves:
 Decoupling the requester from a

request

interface Command {
public void execute(); // Do something

}
public class Invoker {

private Map<String, Command> commands = new HashMap<>();
public void register(String name, Command command) {

commands.put(name, command);
}
public void execute(String name) {

Command command = commands.get(name);
if (command == null)

throw new IllegalStateException("No command!");
command.execute();

}
}

 The decorator pattern provides a way
to add responsibilities to an object
dynamically at run-time

 It is commonly used to customize the
appearance of GUI elements

 The Swing library uses the decorator
pattern to customize borders

 Problems the decorator pattern
solves:
 Adding responsibilities to an object

dynamically at run-time
 Providing a flexible alternative to

inheritance for extending functionality

public class VerticalScrollBarDecorator extends WindowDecorator {
public VerticalScrollBarDecorator (Window windowToBeDecorated) {

super(windowToBeDecorated);
}

public void draw() {
super.draw();
drawVerticalScrollBar();

}

private void drawVerticalScrollBar() {
// Draw the vertical scrollbar

}
}

 The observer pattern is useful for a one-to-many dependency where one object changing can
update many other objects

 An observer pattern defines Subject and Observer objects
 When a subject changes state, registered observers are updated automatically
 Problems the observer pattern solves:
 Making a one-to-many dependency between objects without tightly coupling the objects
 Updating an arbitrarily large number of other objects automatically when one object changes state

public class Subject {
private Object data;
private List<Observer> observers = new ArrayList<>();
public void registerObserver(Observer observer) {

observers.add(observer);
}
public void setData(Object data) {

this.data = data;
for (Observer observer : observers)

observer.update(data);
}

}

 The factory method design
pattern allows a method to
be overridden so that a child
class can determine what kind
of object to create

 A factory method is defined
that is used to create objects

 Problems the factory method
pattern solves:
 Allowing subclasses to define

which class to instantiate

interface Room {
public void connect(Room room);

}
public abstract class MazeGame {

private final List<Room> rooms = new ArrayList<>();
public MazeGame() {

Room room1 = makeRoom();
Room room2 = makeRoom();
room1.connect(room2);
rooms.add(room1);
rooms.add(room2);

}
abstract protected Room makeRoom();

}

 The abstract factory
pattern is similar except
that it uses some object as
a factory instead of
overriding a method

 Problems the abstract
factory pattern solves:
 Making a class be

independent of the objects it
requires

 Making a family of related
objects

public interface Button {
void paint();

}

public interface GUIFactory {
public Button createButton();

}

public class WindowsFactory implements GUIFactory {
public Button createButton() {

return new WindowsButton();
}

}

public class OSXFactory implements GUIFactory {
public Button createButton() {

return new OSXButton();
}

}

 Sometimes it's useful to have only a
single instance of a class

 The singleton pattern makes it so that
it's possible to make only one object of a
class and makes it easy to access

 Problems the singleton pattern solves:
 Ensuring that there's only one instance of a

class
 Making the instance of a class easy to get

public final class Singleton {

private static final Singleton INSTANCE = new Singleton();

private Singleton() {}

public static Singleton getInstance() {
return INSTANCE;

}
}

 The strategy pattern allows an
algorithm to be selected at run-
time

 In Java, that algorithm is usually
encapsulated in the method of an
object

 Problems the strategy pattern
solves:
 Configuring a class with an algorithm

at run-time
 Selecting or exchanging an algorithm

at run-time

interface BillingStrategy {
double getPrice(double rawPrice);

}

// Normal billing strategy (unchanged price)
public class NormalStrategy implements BillingStrategy {

public double getPrice(double rawPrice) {
return rawPrice;

}
}

// Strategy for Happy hour (50% discount)
public class HappyHourStrategy implements BillingStrategy {

public double getPrice(double rawPrice) {
return rawPrice*0.5;

}
}

 Sometimes you have an object that
doesn't generate the right kind of
output

 The adapter pattern allows you to
turn the output from something that
gives one kind of output into the kind
you need

 Problems the adapter pattern solves:
 Reusing a class that doesn't have an

interface the client requires
 Allowing classes with incompatible

interfaces to work together

public interface IceProvider {
Ice getIce();

}

public class WaterToIce implements IceProvider {
private WaterMaker maker = null;

public WaterToIce(WaterMaker maker) {
this.maker = maker;

}

public Ice getIce() {
return maker.getWater().freeze();

}
}

 Construction techniques

 Read Chapter 8: Construction Techniques
 Keep working on the draft of Project 2
 Due Friday!

	COMP 3100
	Last time
	Questions?
	Quick Notes on Project Scheduling
	Project scheduling
	Example of tasks
	Gantt charts
	Staff allocation
	Detailed Design
	Detailed design
	More depth on class diagrams
	Inheritance and interfaces in class diagrams
	Other associations
	Complex example
	Design Patterns
	Object class identification
	Design patterns
	Elements of design patterns
	Composite pattern
	Composite pattern in code
	Command pattern
	Command pattern in code
	Decorator pattern
	Decorator pattern in code
	Observer pattern
	Observer pattern in code
	Factory method pattern
	Factory method pattern in code
	Abstract factory pattern
	Abstract factory pattern
	Singleton pattern
	Singleton pattern in code
	Strategy pattern
	Strategy pattern in code
	Adapter pattern
	Adapter pattern
	Upcoming
	Next time…
	Reminders

