
Week 7 - Monday



 What did we talk about last time?
 Graphic design
 Software engineering design
 Architectural styles







 Project scheduling is organizing the work
 Into separate tasks
 When the tasks will be done
 Who will do them

 Both waterfall and agile approaches benefit from scheduling
 For waterfall, all tasks in the project are scheduled
 For agile, there might be an overall schedule for when major phases of the 

project will be completed
 Tasks should last at least a week but not more than two months
 A task taking more than two months should be broken into subtasks

 It's helpful to have visualizations of these tasks



 This table shows 
all the task 
information, but 
it's hard to 
visualize

 M is used to 
label milestones

Task Effort (person-days) Duration (days) Dependencies

T1 15 10

T2 8 15

T3 20 15 T1 (M1)

T4 5 10

T5 5 10 T2, T4 (M3)

T6 10 5 T1, T2 (M4)

T7 25 20 T1 (M1)

T8 75 25 T4 (M2)

T9 10 15 T3, T6 (M5)

T10 20 15 T7, T8 (M6)

T11 10 10 T9 (M7)

T12 20 10 T10, T11 (M8)



 Gantt charts show the same 
information, but in a much 
clearer way
 Bars shows the length of each task
 Dependencies are shown by the 

starting point of each task
 Recall that you have to make a 

Gantt chart for Project 2
 Thus, you need to break down 

your product into tasks and 
figure out which tasks are 
dependent on which



 It's also possible to 
visualize which staff 
members are working 
on which task (and 
when)

 Doing so might be 
helpful but is not 
required for Project 2





 Detailed design is specifying the internals of the major 
components

 Sequence diagrams and state diagrams can be useful for this 
kind of design

 However, class diagrams are indispensable



 Class diagrams are made up of class symbols (rectangles)
 These class symbols contain one or more compartments
 The top compartment has the class name
 A second, optional compartment often contains attributes 

(called member variables in Java classes)
 Often followed by a colon with the type

 A third, optional compartment often contains operations 
(called methods in Java classes)
 Sometimes followed by parameter and return types

 Visibility modifiers can be marked:
 + for public
 # for protected
 ~ for package
 - for private

 Only important attributes and operations need to be 
specified
 Classes might contain others that aren't shown



 Inheritance is shown with the generalization connector
 A solid line from the child class to a solid triangle connected to the parent class
 Confusingly, this means that children classes point at their parent classes

 Interfaces look like classes but are marked with «interface» above the class name
 This kind of marking is called a stereotype
 Stereotypes show extra information that wasn't part of the original UML class diagram specification

 Classes that implement interfaces have dashed lines leading to a solid triangle connected to 
the interface



 Associations are shown with lines between classes
 Associations can be labeled to explain them
 The lines can be marked with the multiplicity, showing 

how many of each class can be associated with the other
 The multiplicity can be comma separated lists or ranges, 

and * means zero or more
 When a class is part of another class, the part is 

connected by a line and a diamond (the 
aggregation connection) to the whole



From visual-paradigm.com





 With an architecture designed, you can break down its 
components into the actual software objects you will need
 There's no cookbook way to do this
 It requires thinking long and hard about how best to break functionality 

into small pieces
 Possible approaches:
 Look at the written description of your system.  Nouns map to objects and 

members.  Verbs map to operations, services, and methods.
 Tangible entities map to objects and members. For example, aircraft, 

managers, events, and locations might all be objects.
 Analyze different use cases and try to find objects that use cases have in 

common.



 Software design patterns are ways of designing objects that 
have been used successfully in the past
 Think of them as rough blueprints or guidelines

 The idea emerged in the late 70s and is best known from the 1994 
book Design Patterns: Elements of Reusable Object-Oriented 
Software
 23 different patterns, written by the Gang of Four: Gamma, Helm, 

Johnson, and Vlissides
 10 years ago, job interviews routinely asked questions about 

design patterns
 The software engineering community is not as focused on design 

patterns now, though they are still useful



 Design patterns have four essential elements:
 A meaningful name
 A description of the problem area that explains when the pattern 

may be applied
 A solution description of the parts of the design, their relationships, 

and their responsibilities
 A statement of the consequences of using the design pattern

 Patterns are more abstract than code



 The composite pattern is useful for 
part-whole hierarchies of objects

 A group of objects somewhere in the 
hierarchy can be treated like a single 
object

 The Swing library uses the composite 
pattern for its graphical components

 Problems the composite pattern 
solves:
 Representing a part-whole hierarchy so 

that clients can treat parts and wholes the 
same

 Representing a part-whole hierarchy as a 
tree



interface Component {
public void doAction(); // Draw, print, etc.

}
public class Composite implements Component {

private List<Component> children = new ArrayList<>();
public void add(Component component) {

children.add(component);
}
public void doAction() {

for (Component component : children)
component.doAction();

}
}



 The command pattern is 
useful for encapsulating an 
action in an object

 The action is independent from 
the objects that used it and can 
be stored for later

 The Swing library uses the 
command pattern for events

 Problems the command 
pattern solves:
 Decoupling the requester from a 

request



interface Command {
public void execute(); // Do something

}
public class Invoker {

private Map<String, Command> commands = new HashMap<>();
public void register(String name, Command command) {

commands.put(name, command);
}
public void execute(String name) {

Command command = commands.get(name);
if (command == null)

throw new IllegalStateException("No command!");
command.execute();

}
}



 The decorator pattern provides a way 
to add responsibilities to an object 
dynamically at run-time

 It is commonly used to customize the 
appearance of GUI elements

 The Swing library uses the decorator 
pattern to customize borders

 Problems the decorator pattern 
solves:
 Adding responsibilities to an object 

dynamically at run-time
 Providing a flexible alternative to 

inheritance for extending functionality



public class VerticalScrollBarDecorator extends WindowDecorator {
public VerticalScrollBarDecorator (Window windowToBeDecorated) {

super(windowToBeDecorated);
}

public void draw() {
super.draw();
drawVerticalScrollBar();

}

private void drawVerticalScrollBar() {
// Draw the vertical scrollbar

}
}



 The observer pattern is useful for a one-to-many dependency where one object changing can 
update many other objects

 An observer pattern defines Subject and Observer objects
 When a subject changes state, registered observers are updated automatically
 Problems the observer pattern solves:
 Making a one-to-many dependency between objects without tightly coupling the objects
 Updating an arbitrarily large number of other objects automatically when one object changes state



public class Subject {
private Object data;
private List<Observer> observers = new ArrayList<>();
public void registerObserver(Observer observer) {

observers.add(observer);
}
public void setData(Object data) {

this.data = data;
for (Observer observer : observers)

observer.update(data);
}

}



 The factory method design 
pattern allows a method to 
be overridden so that a child 
class can determine what kind 
of object to create

 A factory method is defined 
that is used to create objects

 Problems the factory method 
pattern solves:
 Allowing subclasses to define 

which class to instantiate



interface Room {
public void connect(Room room);

}
public abstract class MazeGame {

private final List<Room> rooms = new ArrayList<>();
public MazeGame() {

Room room1 = makeRoom();
Room room2 = makeRoom();
room1.connect(room2);
rooms.add(room1);
rooms.add(room2);

}
abstract protected Room makeRoom();

}



 The abstract factory 
pattern is similar except 
that it uses some object as 
a factory instead of 
overriding a method

 Problems the abstract 
factory pattern solves:
 Making a class be 

independent of the objects it 
requires

 Making a family of related 
objects



public interface Button {
void paint();

}

public interface GUIFactory {
public Button createButton();

}

public class WindowsFactory implements GUIFactory {
public Button createButton() {

return new WindowsButton();
}

}

public class OSXFactory implements GUIFactory {
public Button createButton() {

return new OSXButton();
}

}



 Sometimes it's useful to have only a 
single instance of a class

 The singleton pattern makes it so that 
it's possible to make only one object of a 
class and makes it easy to access

 Problems the singleton pattern solves:
 Ensuring that there's only one instance of a 

class
 Making the instance of a class easy to get



public final class Singleton {

private static final Singleton INSTANCE = new Singleton();

private Singleton() {}

public static Singleton getInstance() {
return INSTANCE;

}
}



 The strategy pattern allows an 
algorithm to be selected at run-
time

 In Java, that algorithm is usually 
encapsulated in the method of an 
object

 Problems the strategy pattern 
solves:
 Configuring a class with an algorithm 

at run-time
 Selecting or exchanging an algorithm 

at run-time



interface BillingStrategy {
double getPrice(double rawPrice);

}

// Normal billing strategy (unchanged price)
public class NormalStrategy implements BillingStrategy {

public double getPrice(double rawPrice) {
return rawPrice;

}
}

// Strategy for Happy hour (50% discount)
public class HappyHourStrategy implements BillingStrategy {

public double getPrice(double rawPrice) {
return rawPrice*0.5;

}
}



 Sometimes you have an object that 
doesn't generate the right kind of 
output

 The adapter pattern allows you to 
turn the output from something that 
gives one kind of output into the kind 
you need

 Problems the adapter pattern solves:
 Reusing a class that doesn't have an 

interface the client requires
 Allowing classes with incompatible 

interfaces to work together



public interface IceProvider {
Ice getIce();

}

public class WaterToIce implements IceProvider {
private WaterMaker maker = null;

public WaterToIce(WaterMaker maker) {
this.maker = maker;

}

public Ice getIce() {
return maker.getWater().freeze();

}
}





 Construction techniques



 Read Chapter 8: Construction Techniques
 Keep working on the draft of Project 2
 Due Friday!
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